
The Trend cellular automata programming environment for
artificial life, parallel computing, and simulation research

Hui-Hsien Chouy1, Wei Huangy, and James A. Reggiaz

yDepartment of of Computer Science, Iowa State University, Ames, Iowa 50011, USA. zDepartment of
Computer Science, University of Maryland at College Park, College Park, Maryland 20742, USA.

July 9, 2001

Abstract

Trend is a two dimensional cellular automata programming environment with an integrated sim-
ulator and a compiler. Trend has many unique features such as simulation backtracking, conflict
catching, flexible template design, and no preset space size. The Trend language allows user-defined
semi-reserve words, symmetrically rotatable statements, and other constructs specific to cellular au-
tomata programming. Trend is available freely both for Unix systems and the Java platform, and it
can be used to study artificial life, massively parallel computing, or models of natural phenomena.
Designed to be a general purpose programming environment, Trend can be applied to anything a
user finds interesting.
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1 Introduction to cellular automata programming

Cellular automata are massively parallel systems consisting of vast number of cells interlinked to-
gether locally. John von Neumann introduced cellular automata for his self-reproduction study, re-
placing a kinetic model he used previously [24]. His and subsequent related work has been trying to
obtain a deeper understanding of the fundamental information processing principle and algorithm in-
volved in self-reproduction, independent of how that might be physically realized. Cellular automata
provide an ideal abstraction for that purpose, and have become a major vehicle for the artificial life
research [16, 17]. Cellular automata have also been used in massively parallel computing [18], mod-
eling [13] and simulation [23, 25]. Interested readers can find an overview of cellular automata and
self-replicating systems in the review article [21]. Also, in the Parallel Computing Journal there has
been a special issue dedicated to cellular automata and their applications recently [1].

The main focus of this article is to introduce a new cellular automata programming environment
with an associated new programming language, Trend. Originally, Trend was developed to assist
us in the study of complex cellular automata models of self-replication, including systems where
self-replicating structures can emerge from a randomly initialized cellular automata space [6], and
self-replicating structures capable of solving the computer-theoretical problem of satisfiability (SAT)
[7]. Since Trend was designed to be a general purpose two dimensional cellular automata studying

1To whom correspondence should be sent. Current address: 339 Science II, Iowa State University, Ames, IA 50011, USA.
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1



tool, its potential application is far beyond what we have used it for thus far. Trend can be used for
most research involving two dimensional cellular automata.

This article is organized as follows. We begin by briefly introducing the definition of cellular
automata and some of their interesting properties in this section. Next, in Section 2, we introduce the
Trend simulation environment and some of its unique features. The Trend programming language is
discussed next in Section 3. Because Trend is a new cellular automata programming language that
may be unfamiliar to many readers, we provide some Trend programming examples in Section 4 to
help the readers understand it better. Readers who like to learn more about Trend can find more
examples of Trend programming in its software releases. We also have an online resource page for
Trend that will be constantly updated and expanded [22]. Finally, in the last section, we summarize
the unique features of Trend, its potential applications, and our future plan to enhance it.

1.1 Cellular automata and their properties

Cellular automata are arrays of identical processing units, called cells, that are arranged and inter-
connected throughout space in a regular manner. Each cell represents the same abstract finite au-
tomaton (computer) of a model. Cellular automata can be one, two or multiple dimensional arrays,
but one and two dimensional cellular automata are more common due to the difficulty in visualizing
higher dimensional models. One dimensional cellular automata have been extensively studied in the
past and generated lots of interesting results [26, 27]. Two dimensional cellular automata have also
been studied a lot, and are the primary research vehicle for self-replication studies in artificial life
[3, 15, 5, 19]. Trend was designed to support two dimensional cellular automata programming, thus
we focus mainly on 2-D cellular automata models in this article, although 1-D cellular automata can
also be simulated with Trend.

Each cell in a cellular automata space can be in one of n possible states specified by a model. These
internal states are usually represented by integers starting from 0 to n � 1, where 0 is usually the
designated quiescent or “inactive” state. Non-zero states are “active” states. During each instance
of simulated time steps, called an epoch, each cell uses a set of rules to determine its next state as a
function of its current state and the state of its immediate neighbors. Which cells are considered to
be the immediate neighbors of a cell vary from model to model. The two most popular choices are
the von Neumann neighborhood and the Moore neighborhood, both are named after their creators. With
the von Neumann neighborhood, a cell has four neighbors in its north, east, south and west sides.
The Moore neighborhood includes four additional neighbors in its northeast, southeast, southwest
and northwest corners. Generally, a cell is always part of its own neighborhood, therefore there are
five neighbors in the von Neumann neighborhood and nine in the Moore neighborhood. The von
Neumann and Moore neighborhoods are depicted in Figure 1.

In cellular automata cells are commonly governed by the same set of rules collectively called the
transition function. These models are homogeneous cellular automata2. For example, one of the famous
Game of Life rules [12] states “If a cell is in state 0, and exactly three of its eight neighbor cells in the
Moore neighborhood are in state 1, then that cell should change to state 1 at the next instance of time.
Otherwise, it remains in state 0.” As we can see, each cellular automata rule is based solely on locally-
available information to the current cell (a.k.a. the center cell) that is doing the transition. However,

2Cellular automata can also be non-homogeneous where cells follow different rules depending on their positions or the
time step. However, Trend was not designed to support non-homogeneous models.
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Figure 1: The von Neumann and Moore neigh-
borhoods.

research has shown that cellular automata, through their application of the same rules by all cells
simultaneously and repetitively over time, can produce very rich and at times striking behaviors. For
this reason, cellular automata are being increasingly used as models in physics, chemistry, biology,
and other scientific fields [13, 18, 23, 25].

To summarize, any well-defined cellular automata model requires the following four basic ingre-
dients:

1. a neighborhood template for local references,

2. a set of states with a designated quiescent state,

3. a set of state change rules, i.e. the transition function, and

4. an initial space configuration that starts a simulation.

The quiescent state (0 in most cases) is unique in that, by cellular automata definition, if all cells in a
neighborhood is in the quiescent state, then the transition function must produce the quiescent state
as the next state of the center cell. In another word, there must be a designated state in a cellular
automata model which means “nothing is here”, and since nothing is here, “nothing can happen”.
As we will see later, this required cellular automata property has been used in Trend to speed up
simulations. A “snapshot” of a cellular automata space at any time step is often called its configuration.
Naturally, we need a starting configuration to start the simulation.

Some other properties of cellular automata are related to their rotational symmetry. Rotations of
two dimensional cellular automata are carried out in 90Æ increments in our discussion. Therefore, ro-
tating a space four times returns it to its original orientation. Cellular automata neighborhoods can be
rotationally symmetric (as in the case of von Neumann and Moore neighborhoods above), or they can
be asymmetric. An asymmetric neighborhood cannot be rotated onto itself, thus references of neighbor
positions cannot be symmetry, resulting in non-isotropic cellular automata models. In isotropic cellular
automata models, all neighbors have three other rotational counterparts in the neighborhood, and their
transition functions can be programmed to treat them indistinguishable from one another. In essence,
this makes cells in isotropic cellular automata models unable to tell the absolute north of its contain-
ing cellular automata space from east, south or west because the same result of transition mapping
will be produced for inputs that are rotationally the same to each other. Another way to look at this is
that isotropic cellular automata models can take any rotated initial configuration as input, and always
produce the same output with the same rotation. Non-isotropic models may not produce the same
rotated result if a rotated initial configuration is given, thus by comparing the difference a cell can
determine what is the absolute north of its cellular automata space.
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Note that a symmetric neighborhood is a necessary but not a sufficient condition to produce an
isotropic cellular automata model. The transition function must also be programmed to be rotation-
ally indifference. In Trend, both symmetric and asymmetric models are supported, although many
Trend language constructs are specifically designed to exploit the rotational symmetry of a cellular
automata model, and may not be very useful if a model is asymmetry.

1.2 The cellular automata template

In addition to the four basic ingredients above, more information can be specified about cell states
to precisely define a complex model. Cell states can be defined to be strong or weak rotational sym-
metry. Strong rotational symmetry states are unoriented or rotationally indifference. Weak rotational
symmetry states has a sense of their direction, and are always in groups of four. Weak states permute
among one another in their group under successive rotations of an imaginary symbol. For example,
the symbol designated " in von Neumann’s work [24] is directionally oriented and permutes among
four different cell states ",!, #, and under rotations. They represent one component that can exist
in four different orientations. The rationale behind weak rotational symmetry states is that a cell may
not be able to tell the absolute north of its universe, it should still be able to tell its left from right, as
many asymmetrical biomolecules can do. Rotational symmetry states only make sense in symmetric
cellular automata models, but strong and weak states can coexist in the same model.

Modern cellular automata modeling involves the idea of field division. Data bits for storing the
states of a cell can be subdivided into individual fields which can be referenced and computed inde-
pendently by the transition function. Fields are functional divisions of the state variable of a cell into
different bit groups, each encoding a different property of the model being studied. We can think of
each field as a slice of a cell variable with its own name and value. Alternatively, we can treat each
field as a different variable, as if each cell can now hold many variables. This cellular automata pro-
gramming technique was originated from the CAM-6 machine [23] and has become an indispensable
programming feature of Trend. The use of fields allows field-oriented cellular automata programming
that can greatly simplifies the effort of a Trend programmer. Nevertheless, fields do not change the se-
mantic of the original cellular automata definition in any way. We will see a few examples in Section 4
that illustrate the power of using fields.

In Trend, all information of a cellular automata model are collectively stored in a template file. In
addition to the model definition, the following user-defined information are also stored in a template
file: the names of neighbors and fields, the symbols to represent cell states, and the colors to represent
fields on screen. These programming or visual informations are not part of the cellular automata
model definition, but they are useful for the pragmatic purposes of Trend.

1.3 Previously available cellular automata simulators

Before powerful computers became available, studies of cellular automata had to be conducted an-
alytically, as John von Neumann did with his 29-state self-reproducing universal cellular automata
machine [24]. Later, when E.F. Codd constructed his 8-state self-reproducing universal machine, he
had started using computers to work out some of his rules [8, 3]. It had been necessary in the past for
someone interested in studying cellular automata to develop his own program for simulation. That
was usually a time-consuming process even for simple models. The transition function was usually
represented in a tabular format, as in von Neumann’s and Codd’s models. A tabular rule set is hard
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to understand by the others. Although there were several public domain cellular automata simula-
tors when the work described in this article began in 1993, most of them were designed for a specific
model, e.g. the Game of Life. What was needed is a general purpose cellular automata simulation
environment that removes the burden of software development from cellular automata practitioners,
allowing them to concentrate on their modeling effort, not the detail of their computing hardware and
software for generating graphics.

Before Trend, the first general purpose cellular automata programming tool was the CAM-6 ma-
chine (abbrev. CAM below) [23]. It has both hardware and software components, consisting of a
module that plugs into a single slot of a PC, and driving software that operates under PC-DOS. The
control software for CAM is written in Forth, which is a semi-high level postfix language where oper-
ators are always after their operands in an expression. The Forth language adopted by CAM has been
extended to contain a variety of keywords and constructs useful for defining cellular automata rules
and for designing, documenting and running simulations. A source program for CAM is converted
by the host computer to an internal table stored in the CAM hardware before a simulation starts.
Simulations can be visualized on a color monitor with each cell represented by a colored dot.

In CAM, up to four bits are available for encoding the state of a cell, therefore a cell can have up
to 16 states. There are some restrictions on the collective use of the four bits, e.g. the center cell cannot
access all four bits of its neighbors at once. CAM has a limited set of predefined neighborhoods, and
there is no general mechanism to allow the definition of arbitrary new neighborhoods. See [23] for
more information about the CAM-6 machine3. The CAM machine is historically important because it
is the first general purpose cellular automata simulation system that is widely available. It is also the
first simulator to use hardware acceleration, to introduce the concept of data fields, and to provide
a high level language to describe rules beyond tables. Although the capability of the CAM machine
may seem less powerful today, it has inspired several new cellular automata simulators, including the
one being presented here.

Another general purpose cellular automata simulator is Cellular, which is designed primarily to
model physical systems [9, 10]. It consists of a compiler for its high level programming language
Cellang, a simulator, and a viewer for visualizing the output. The Cellang language has components
to describe both the cellular automata models and rules. Its model description determines how many
dimensions there are in a cellular automata model, what fields each cell contains, and the bit depth of
each field. There are three kinds of statements for rule description in Cellang: if, forall and assign-
ment. A predefined variable cell refers to the current cell under consideration, and an assignment
to it sets the next state of the current cell. Neighbors can be arbitrarily referenced using an indexing
format such as [0,1] , which denotes the north neighbor. However, there are no named neighbor
positions in Cellang. The Cellular system can be obtained online at [11].

In addition, there were several other cellular automata simulation systems, however, we did not
find any of them to meet our need for developing complex cellular automata rules when we started
our artificial life research in 1992. As noted by Arthur Burks [3], a pioneer in cellular automata pro-
gramming, the procedure for cellular automata research is often repetitive:

The general principle is this. The investigator partly defines a transition function for his cellular
space. He then specifies an initial automaton state and has the computer generate a finite fragment
of the resultant cellular automaton in an attempt to produce one of the desired phenomena. He

3There had been efforts to create a more powerful CAM-8 machine in the early 90’s, but we do not know if such a
machine eventually became commercially available.
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repeats this step until it succeeds or until he decides it is not promising. In the latter case he tries
an alternate partial definition. If the step succeeds, he augments the partial definition further in an
attempt to produce other desired phenomena, and repeats the step.

The ability to quickly program, test, rollback, modify and restart a cellular automata simulation is cru-
cial to a successful cellular automata research. It is especially critical if one wishes to study complex
cellular automata models often involved in artificial life research. Additionally, we need a simulator
that provides a high level programming language, a large number of cell states, the support for data
fields, and an integrated, easy to use user interface. To obtain a simulation tool that contains every-
thing above, we had no choice but to design ours from scratch. The resulted new system, Trend, will
be introduced next.

2 The Trend simulation environment

Trend provides a high level language for rule programming, a built-in text editor for entering and
correcting programs on-the-fly, a large number of allowable cell states (264) that can be divided up
to 31 data fields, a flexible template design window, a sophisticated mechanism for backtracking
of cellular automata simulation steps, a colorful on-screen cellular automata space display, and an
interactive graphical user interface. Trend is freely available for both Unix-like operating systems and
Sun’s Java Virtual Machine, which means it runs on all major computing platforms.

Trend was developed completely from scratch. Originally, a basic framework of the simulation en-
gine was developed and that allowed some simple cellular automata models to be simulated. Then,
great efforts were spent on the development of the high level cellular automata programming lan-
guage and its compiler. Parallel to the Trend compiler development was the development of an
evaluation module for executing the virtual machine code generated by the Trend compiler. Virtual
machine code was used because it allowed portability between different Unix computing platforms.
The Trend language was gradually enhanced to contain a complete set of familiar high level language
constructs, and constructs specifically designed for cellular automata programming. Recently, we
ported the whole Trend system to the Java Virtual Machine (JVM) with a new compiler which shares
the same front-end language parser and semantic checker with the Unix version, but generates na-
tive JVM bytecode. This new program, jTrend, further expands the availability of Trend to desktop
computers.

2.1 Using Trend

Users provide the cellular automata template information of their models either by loading a previ-
ously designed template file (with extension .tmpl ), or by designing a new one using the Template
Design Dialog after Trend has been started. As said above, the template information includes neigh-
bor positions (the neighborhood), data fields, symbols to denote states on screen, etc., and is required
for any cellular automata model. After Trend starts, it presents users with two major windows similar
to the ones shown in Figure 2 and Figure 3. The Main Window displays the current cellular automata
space, and the Text Window displays the current Trend program being edited. A cellular automata
configuration file (with extension .ca ) and a rule set file (with extension .rule ) can be loaded auto-
matically into the two windows when a template file with the same root name is being loaded if the
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Figure 2: The Main Window of the Trend environment.

two files are located in the same directory with the template file. Users can edit the cellular automata
space and the rule program directly within these two major windows.

Once an initial cellular automata configuration and a rule program have been prepared, a simula-
tion can be started using either the keyboard arrow keys or the Control menu in the Main Window.
Trend computes a new cellular automata space based on the current one and the rules specified in
the Text Window. If there is any error during the simulation, Trend will stop and report the problem.
Possible types of runtime errors will be discussed in Section 3 after we have introduced the Trend
language. Trend’s feature to catch certain runtime errors can be turned off to enhance its simulation
speed. Its tracing mechanism is automatically turned on by default, and allows a simulation to go
backward in time steps for users to discover rule design problems and correct them. Being able to go
back and forth in a simulation is probably the most useful feature Trend provides to rule set develop-
ers. To enhance the speed of the simulation, Trend also provides an internal caching mechanism to
store recent rule set evaluation results. Tracing, caching and catching of errors can all be controlled
using the Option menu in the Main Window.

During a simulation users can control lots of things. They can stop the simulation at any time to
examine the cellular automata space. They can choose different screen update frequencies, different
font sizes and different cellular automata space sizes using the Appearance menu. Trend imposes
no preset limit on the size of the cellular automata space that can be simulated. It is determined
by individual computer memory size and CPU power, i.e., when users see sluggish performance in
Trend, they know they probably have reached the limit on their computers. The cellular automata
viewing area in the Main Window can be scrolled around if the actual space size is larger than the
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Figure 3: The Text Window of the Trend environment.

Main Window can display at once. Users can run a simulation for as long as they see fit. At the end
of a simulation, the cellular automata space can be saved to a .ca file for further analysis, or it can be
exported to an Encapsulated Postscript (EPS) file for inclusion in a publication.

The Trend simulator is designed to facilitate development of complex cellular automata models.
Typically, users start with only a limited knowledge of how their rule sets will work with their models.
Gradually, they walk through incremental steps of augmentation to their rule sets while the simula-
tion is going on, i.e. when new rules are needed to lead the present cellular automata space to the next
configuration desired by the users, they are simply added to the current rule set. The backtracking
mechanism of Trend guarantees multiple levels of undoing and redoing, giving users 100% control
to resolve rule conflicts, try out new rules, or modify their cellular automata models altogether. The
built-in one-pass compiler in Trend runs almost instantly to compile rule sets of various sizes. There
is no preset limit on the size of Trend programs. The execution of compiler generated code is also
very efficient, and may become unnecessary once previous evaluation results have been stored in the
cache. Because of the way cellular automata rules are usually constructed, the evaluation speed of the
compiled code does not necessarily relate directly to the Trend source program size.

2.2 New template design

Users can use the Template Design Dialog shown in Figure 4 to specify new models. This dialog
window consists of two main parts, dealing with neighbor and field definitions separately. On the
left-hand side is a set of choices specifying the neighborhood structure of the cellular automata model
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Figure 4: The Template Design Dialog. The left portion of the dialog is used for neighborhood
definition. A Moore neighborhood is illustrated here, which is symmetric. The right portion is for
field definition. Fields are named bit groups that can be used to store data of varying sizes in each
cell.

being created. Users have to determine first if their neighborhood should be rotationally symmetric
or not. This selection determines if the rotated if statement can be used inside their Trend programs
developed for the model. For example, if their neighborhood is rotationally symmetric, the following
rotated if statement can turn a cell to 1 if any of its north, east, south or west neighbors is 1:

rot if (north:cell==1) cell=1;

This statement tests the north neighbor of a cell to determine if the assignment should be made when
used without the rot prefix. If the neighborhood is rotationally symmetric and the rot prefix is given,
this statement is automatically rotated by Trend to test against the east, south and west neighbors of
a cell. More about the rotated if statement will be explained in Section 3.

If a neighborhood is not symmetric the rot rotation will not be possible because some neighbors
may not find their counterparts in the other three orientations of a statement. If a neighborhood is
designated to be rotational symmetry, neighbor positions in that neighborhood must be made sym-
metric, otherwise Trend will complain. In the Moore neighborhod shown in Figure 4, all neighbors
can find their three rotational counterparts, so the neighborhood is symmetric. If the neighborhood is
not symmetric the rotated if statement cannot be used inside Trend programs for this model.

Below the symmetry choice is a matrix of cells for defining neighbor positions. The “center cell”,
marked by the letter ‘C’, is required to be included in any cellular automata neighborhood. It is some-
times also referred to as the “current cell” that is being evaluated. Additional neighbors are defined
by clicking the other cells surrounding the center cell. If a neighbor is defined it will have an ‘X’ mark
and its name will be shown in the Neighbor Name area when it is clicked. If the name of a neighbor is
deleted from the Neighbor Name area, that neighbor will be removed from the neighborhood. Trend
allows arbitrary neighbors to be defined within an 11� 11 region around the center cell. There are no
specific reason why the region has to be 112. We simply believe this neighborhood size is big enough
for most cellular automata models. All neighbor names defined in a neighborhood automatically
become the semi-reserve words recognized by the Trend compiler.
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Figure 5: The Fields control palette. Field names
are listed in the right column for users to set the
focus field. On the left column is a set of check
boxes users can use to control field displaying.

On the right-hand side of the Template Design Dialog is a set of choices for field definition. The
Bit Depth Reference provides visual advice on how many bits have been allocated to fields and how
many are still available. Users can use it to budget bit allocations. However, the Bit Depth Reference
has no effect on the actual number of bits allocated for a cell. Trend uses byte as the unit for cell
storage and allocates only enough bytes to represent all data fields in a cell. For example, if four fields
are defined, each using five bits, then the actual allocated bytes for a cell will be three. Note that the
smaller the bit depth, the less storage is required, and the faster Trend simulation will run. The Field
Division area defines new data fields. Up to 31 fields can be defined here. If a field is defined, its
name will be displayed in the Field Name area when it is clicked. Deleting a field name in this area
also removes that field. Once a data field has been defined, users can pick a color for displaying it
on screen. If its bit depth is less than eight, users can also define individual state symbols for that
field. These are listed in the State Symbols of This Field area. Weak rotational symbols are defined by
typing the special underscore ‘ ’ character after them. If a state is weak rotational symmetry, the next
three states following it are reserved as its rotational counterparts. These four states are displayed on
screen by Trend using the same chosen symbol in four different orientations.

Do not confuse the rotational symmetry of the weak states of a field and the rotation symmetry
of the neighborhood. The weak states can rotate into one another in a group of four only if the
neighborhood is symmetric and the rotated if statement are used in a Trend program. However, users
can always choose a particular symbol to represent a group of four states on screen, even when the
neighborhood is not symmetric. In the latter case, the chosen symbol is simply used to display the
four states on screen, without having any rotational relationship among the states.

2.3 Displaying, editing and simulation control

In the display area of the Main Window, field states are represented by predefined symbols in the
template. Different data fields can be displayed or hidden from view by setting the display checkboxes
in the left column of the Fields control palette (Figure 5). The more data fields displayed, the harder it
is to recognize each individual symbols. It is up to the users to determine the fields to be displayed at
any given moment. Quiescent states (zeros) in each field are not displayed unless users select Show
Quiescent Fields under the Appearance menu. Editing in the display area is simple, conducted by
right-mouse clicking on a cell to be modified and by selecting a state from the resulted popup menu.
The focus field that is being edited is controlled by the right column of the Fields control palette. Users
can randomize the focus field by using the Randomize dialog available under the File menu. In that
dialog, users specify the upper and lower bounds of state values, and a percentage to fill the cellular
automata space with these values.

There is a Control menu in the Main Window to control the direction of a simulation. Users can
also use the arrows keys on their keyboard to control. The “–>>” menu item (up-arrow key) moves
the simulation forward continuously. The “–>” menu item (right-arrow key) moves the simulation
forward one step at a time. The “stop” menu item (spacebar key) stops the current continuous for-
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ward or backward movement, if any. The “<–” menu item (left-arrow key) backtracks the simulation,
and the “<<–” menu item (down-arrow key) starts backtracking continuously until the earliest saved
simulation step has been reached, which is usually the first epoch. Backtracking is available only
when the tracing mechanism is turned on under the Option menu. The tracing mechanism is very
handy because it allows users to pinpoint the exact moment something goes wrong. Although the
tracing mechanism saves only the differences between iteration steps to a temporary file, it can still
eats up disk space for large and long simulations. Trend displays the file system usage status that
allows users to stop the tracing mechanism when the file system is full. Additional status information
displayed include the current epoch number, the coordinate of the mouse, the efficiency of code eval-
uations, and if there are any conflict or unsolved errors in the cellular automata space. We will talk
more about these two errors in Section 3.

2.4 Program editing, compiling and debugging

Users edit their Trend programs inside the Text Window (Figure 3) and save them to .rule files.
Trend programs are compiled into virtual machine code through the Compile menu. All compiling
errors are shown in the Message area. Since Trend is designed to be interactive, only the first syntax
or semantic error is reported. Users can easily modify their program and recompile again within the
Text Window.

During a simulation, if runtime errors are discovered, they are reported by Trend in the Message
area as well. When any error occurs, users have to correct the error before the simulation can continue.
The Jump and Goto commands in the Edit menu are designed to help users move the cursor quickly
to a specific character position in the Trend source program for debugging purposes. Commonly,
When runtime errors are found, Trend reports the character positions of the errors. Users can select
(highlight) a position value reported in the Message area, and choose the Jump command to move the
editor cursor to that error spot instantly. The Goto command behaves similarly, but asks the user to
provide the character position rather than getting it directly from the Message area.

3 The Trend programming language

Traditionally, cellular automata transition functions are defined in a tabular format, listing all map-
pings from neighborhood configurations to next state values. This kind of representation has at least
three inconveniences:

� When the the number of states or the number of neighbors in a model gets bigger, the table
grows exponentially in size, making it hard, if not impossible, to represent all mappings explic-
itly in the limited computer memory.

� A tabular representation of the transition function is not easy to understand because it does not
explicitly convey the ideas of a model to readers. It is hard for readers to understand a table full
of plain numbers, just like it is hard for readers to understand low level machine code.

� In addition, it is inconvenient for a cellular automata programmer to manually convert his ideas
into the tabular format, but he must do so before he can start a simulation.
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Because of these limitations, a high level structured programming language has been developed for
cellular automata programming. With this new Trend language, the cellular automata transition func-
tion is implicitly defined by the algorithmic operations expressed in the language. These operations
define how a next state value can be computed based on the cellular automata neighborhood input.
Because the Trend language provides most modern programming language constructs, it allows tran-
sition functions expressed in it to be very complex, but still quite readable. This greatly extends the
power of cellular automata programming when compared to tabular rule sets.

Trend is modeled after the popular programming language C, with cellular automata specific lan-
guage constructs added to it. These constructs include statements to scan all neighbors in a neigh-
borhood, data types to access data fields and neighbors, special rotatable literals representing weak
rotational symmetry states, and a rotated if statement to exploit the rotational symmetry properties of
many cellular automata models. Previous knowledge of C is not required to learn the Trend language,
but it may be helpful.

Conceptually, a high level language for cellular automata programming should provide abstract,
named data items to denote the data fields within each neighbor in a neighborhood. Based on these
data items, new values are computed and assigned to names representing data fields in the center
cell. These values are taken as the next state values of that cell. The users’ job of filling out the tran-
sition table of a cellular automata model in the past now becomes the job of prescribing how the
next state values can be computed from the neighbor values. This is a familiar approach to anyone
with some high-level language programming experience. Therefore, adapting to cellular automata
programming requires just learning a new programming language. The tedious job of the past, some-
times involves creating a complex rule table and a program just to start a basic cellular automata
simulation, is no longer needed with Trend.

The Trend compiler is a full-fledged compiler bundled with the simulator program. Although the
language is modeled after C, its compiler is not an extended C compiler. Instead, it is a new compiler
implemented from scratch because cellular automata rules work in a parallel fashion among cells,
which are intrinsically different to a sequential C program.

3.1 A preliminary example

It will help to look at a sample Trend program before we consider the details of the Trend language.
The following is the Game of Life rule set written in the Trend language. It states that an active cell
will be born if it has exactly three active neighbors, and an active cell will die if it has less than two or
more than three active neighbors. Here life is a field (and the only field) of the Game of Life model.

default life=life; // default is no change to cell values
int count; // declare an integer variable ’count’
nbr y; // declare a neighbor variable ’y’
count=0; // initialize counter to zero
over each other y: // count active neighbors

if (y:life) count++;
if (count<2 || count>3) // the death rule

life=0;
if (count==3) // the birth rule

life=1;
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The statements of a Trend program are executed in sequential order from the viewpoint of a cell. The
fact that different cells can simultaneously follow different decision routes of the same Trend program
makes up the parallelism of cellular automata programming. At the beginning of the example, default
denotes that the statement after it will be the default action taken if no other statements generate a new
value for the current cell. Here, it simply states that every cell should stay unchanged by copying over
the life value. Customarily, default statements are used to catch all “leftover” conditions not explicitly
defined in a Trend program.

After the default statement, int and nbr are used to declare two variables, count and y . One is
used to store integer values and the other is used to store a neighbor position index. The program
starts with an initialization statement to set the counter to zero, then counts the number of active
neighbors around a cell. Two rules are used next to determine the situations for birth and death. If
none of the two statements is applicable (e.g. if count equals to 2), the default statement will be used.

Comments of a Trend program can be marked by either the delimiter // or the /* and */ comment
pair. Everything after // until the end of a line are ignored by the compiler, and everything enclosed
between /* and */ are ignored by the compiler as well. Nested comment pairs are allowed in Trend.

Trend compiler does one-pass scanning of a source code to speed up the compilation process.
Because of this, all variables and functions must be declared before their use. Normally, a Trend
program starts with variable and function declarations, followed by the main rules. Default rules can
be put anywhere within a program, although it is common to group them together at the beginning
or end of the code.

3.2 Reserve words, names, and variables

Like ordinary programming languages, Trend has its own set of reserve words as shown below. These
reserve words cannot be used for any other purposes in a program. Reserve words are shown using
a special slanted font face in this article to distinguish them from the other language elements.

if int nbr fld rot default over void each else while for other break return length

Trend also has a special set of semi-reserve words called names that are defined not in the compiler,
but in the template information loaded by the simulation program. These semi-reserve words are user
defined field and neighbor names for a cellular automata model. They are shown in this article using
a sanserif font face. Some possible names are given below:

North East South West ne se sw nw fieldA component life state

Finally, users can define temporary storage space in Trend as variables or arrays, just like other
programming languages. Variables or arrays can store temporary computational results, and neigh-
bor or field indices. However, their values are lost once an evaluation is done for a cell. They are
shown in this article using a typewriter font face . Some examples of variable or array names
are the following:

x y z count a b c from to pos layer domain next
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3.3 Data types

There are three data types in Trend. The integer type is common to the other programming languages,
but the field and neighbor types are unique in Trend. Types are not interchangeable, but users can write
explicit functions to map one type to the others. See Section 4 for examples.

� int is an unsigned integer type whose value can be stored in the fields of each cell. In fact, fields
accept only data of this type. During each epoch, each field of a cell is expected to get a new
value, otherwise a runtime error will be reported. Symbols, such as ’O’, ’L’, ’>’, etc., can be
defined in a template, then used in a Trend program to represent different field values. These
symbolic literal values are converted to integer values by the compiler. The following subsection
about data objects provides more information about literals.

� nbr is a special type to denote neighbor positions like north, south, east, or west. When com-
bined with the fld data type, they can uniquely identify a particular field within a particular
neighbor whose value is being referenced in a statement.

� fld is a special type to denote fields within a cell. Basically, the total bit depth of a cell (e.g., 8
bits) can be functionally divided into different fields (e.g., 2, 2 and 4 bits each) such that each
field encodes a different meaning or function of a cellular automata model.

Data of type int can be manipulated and compared just like regular 32-bit unsigned integers in C.
Data of types nbr and fld are more restricted; they cannot be used with mathematical operators since,
for example, it is meaningless to add two neighbor positions together. Neighbor and field indices can
only be compared by equal ’==’ and unequal ’! =’ operators. When an integer data is assigned to a
field, only its lower bits that can fit into the size of the field will be preserved.

3.4 Object types

Like most programming languages, Trend provides different object types for programming conve-
nience. Data objects are the basic constituents of expressions. They can be literals, variables, neighbor
and field references, array elements, or function calls.

Literals

Literals are defined by their face values, which remain constant in a program. Literals cannot be put
into the left hand side of an assignment statement. There are two formats of literals in Trend: the
numeric format and the symbolic format. Symbolic format is defined by the template of a cellular
automata model. For example,

0, 1, 2, 99, ’O’, ’ >’, ’ >,2’, ’ >,1: fieldA’, North:, : fieldA.

are all literals, assuming that the neighbor “North”, field “fieldA”, the symbol “O” and the weak rota-
tional symbol “>” are all defined in the current template. ’O’ represents the int value of the symbol
“O” defined for the current field, which is determined by the program context. It can take the numeric
value 5 if “O” is the sixth symbol defined for the current field (state values start from zero). The lit-
eral ’>,2’ denotes the second rotation value of the weak rotational symbol “>”. If the value of “>”
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is 6, then ’>,1’, ’>,2’ and ’>,3’ will represent the values 7, 8 and 9 (rotation is clockwise). ’>,1:fieldA’
denotes the first rotation value of the symbol ’>’ for the explicitly designated field fieldA. Note that
symbolic formats and numeric formats are interchangeable to some extent. We may use 5 and 8 in
places of ’O’ and ’>,2’, and vice versa. However, the symbolic format provides more descriptive
information to the reader of a program. In addition, only the symbolic format will be automatically
rotated in a rotated if statement (see below). Therefore, the symbolic format should be used whenever
possible. Of course, symbols must all be defined in the cellular automata model template before they
can be used to represent state values symbolically.

North: and :fieldA are literal values of nbr and fld date types, again, provided that they are both
defined in the template. Note that there is no numeric format for nbr and fld literals in Trend, i.e. their
exact numerical indices are unavailable. The mandatory symbol “:” after a nbr object and before a
fld object is required to distinguish them from the integer data objects in Trend. For example, fieldA
denotes the value of the field named “fieldA”, so it is not a literal and has the int data type. However,
:fieldA denotes the field index of the field named “fieldA”, which is a literal and has the fld data type.
The value of :fieldA can be assigned only to a fld variable. For example, after the following assignment
statement,

:slice_ptr = :fieldA;

the value of fieldA can be accessed through the fld variable slice ptr as if it is a pointer to fieldA.
On the contrary, if the assignment statement is written in the following manner, the current value
of “fieldA” is copied into the int variable slice value . This new copy is therefore independent of
“fieldA” after the copy is made.

slice_value = fieldA;

To summarize, the syntax of the four different formats of literals are the following:

:field_name // fld type literal
neighbor_name: // nbr type literal
’s[,n][:field_name]’ // symbolic int type literal
n // numeric int type literal

where s stands for a symbol defined in the model template for the current field and n stands for
a number. Note that ‘[ ’ and ‘] ’ denote optional parts of the symbolic literal and are not part of it.
Both the rotation count [,n] and the field designation [:field name] can be omitted in a symbolic
literal. The rotation count, if presents, must be either 1, 2, or 3, representing one, two or three times
clockwise 90Æ rotations of the base symbol.

The field designation (e.g. “: fieldA” in ’ >,1: fieldA’ ) of a symbolic literal is needed only when
an effective current field cannot be resolved by the compiler. If a literal is used with a field name in an
assignment or boolean expression, Trend can extract the current field information from the program
context, so an explicit field designation is not needed. For example, in the following, an explicit field
designation is not needed for any literal because that can be inferred from the program context:

fieldA=’O’; // assign the symbolic literal ’O’ to fieldA

15



// if fieldA value in the north neighbor is equal to ’O’, set
// the variable ’count’ to 0.
if (North:fieldA==’O’) count=0;

// if the southwest component field equals ’>,1’, set current
// component value to ’>,1’ as well.
if (sw:component==’>,1’) component=’>,1’;

A statement like “fieldA=’O: fieldA’ ” is acceptable although it is redundant to specify the field name
twice, once in the assignment target and again within the literal.

If a literal is used with a variable or array element whose intended field is not obvious from the
program context, Trend compiler cannot figure out the current field for a literal. Therefore, field
designations become necessary, as in the following examples (assuming x and y are int variables):

x=’O:fieldA’;
y=’L:component’;
if (x==’O:fieldA’) count=0;
if (y==’>,1:component’) y=’>,2:component’;

Trend reports errors when a current field cannot be inferred from the program context and an explicit
field designation is not given in a literal.

Neighbor and field references

Neighbor and field references are unique in Trend and are given in this format:

nbr:fld

where nbr can be any valid nbr data objects: literals, variables, array elements or function calls. Sim-
ilarly, fld can be any valid objects of fld type. When combined together this way, they denote the
value of a particular field in a particular neighbor, which has the int data type. The “nbr:” part can be
omitted. In that case, the the center cell is taken as the default neighbor.

Variables

Variables in Trend are named storage places to hold temporary data. Their values can be initialized
by an assignment statement or a declaration with initialization. If their values are initialized in a dec-
laration, their values cannot be altered later in a program. This semantic is established to ensure that
every time a Trend program is executed, it will always have the same starting conditions. Presumably,
preinitialized variables serve as tables or constants for a model, and should not be changed. Values of
variables are undefined if they are used before being properly initialized.

Arrays

A chunk of temporary storage space can be allocated at once and referenced with the array indexing
syntax “array[index] ”. Only one dimensional arrays are supported in Trend currently. Array
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index must be of type int, but arrays can be of the int, nbr and fld types. For an N element array its
index runs from 0 to N � 1. Trend offers runtime checking of array indexing, and reports errors when
an out-of-bound reference is made in a Trend program. The length of an array can be obtained by the
special length keyword like “array.length ”. Similar to variables, a preinitialized array cannot be
altered in a Trend program, and an uninitialized array has undefined values.

Function calls

A function is invoked by giving its name followed by a comma-separated list of arguments enclosed in
parentheses. Arguments can be expressions of data objects, including other function calls. A function
returns a value of its declared data type. Functions can only be used within expressions; they cannot
form stand-alone statements like procedures. Procedures are similar to functions but are declared
with the special void data type, which means that no value is returned. Therefore, procedures cannot
be used in expressions since they do not return values.

Functions return values by the return statement. The return statement immediately terminates
the current function and returns the value of its argument to the caller routine to be used within an
expression.

3.5 Declarations

Variable and array declarations consist of a type name, followed by a list of variable or array names
separated by commas, and ended by a semicolon. The difference between a variable and an array
is that an array has the size part marked by the “[” and “]” symbols. An optional initialization part
can follow each variable or array name. An array with initialization will have its size determined
automatically by the initializer, therefore its size should not be given. All of the following declarations
are valid:

int i, j, k; // int type variables i, j and k.
nbr from, to, where; // nbr type variables from, to and where.
fld a, b, c; // fld type variables a, b and c.

// declare an int array buf[] with ten elements, an int array
// x[] with two elements, and an int variable yy, all with
// initialization.
int buf[]={ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 },

x[]={ ’O:fieldA’, ’>,2:fieldB’}, yy=99;

// declare a nbr array permute[] with five elements,
// initialize it to the five neighbor indices.
nbr permute[]={ Center:, East:, South:, West:, North: };

// declare fld variables tag and trace, and initialize them
fld tag = :fieldA, trace = :fieldB;

Note that a field designation is usually needed when initializing an int variable with a symbolic literal
like ’O:fieldA’ because the compiler cannot determine the designated field of the literal. There can be
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many “O” symbols in different fields, each having a different state value.

Within a field, symbols for used states must be unique, but unused states can be represented by
the same symbol, such as “?”, to denote the impossible occurrence of such states in a cellular automata
space. Trend does not prevent the same symbol to be used multiple times within a field to represent
different states, because this would prevent the default symbol usage just mentioned. However, if the
same symbol is defined for multiple state values in a field, it will always represent the lowest of these
state values when used as a symbolic literal in a program. This is sometimes confusing and should be
avoided.

A function declaration consist of a type name, a function name, a left parenthesis, formal argu-
ments (if any) separated by commas, a right parenthesis, and the function body. The function body
must be a block statement, i.e., it must be enclosed by “f“ and “g”. The following is an example of
function declarations. This particular function maps a neighbor position to an integer value which
is treated like a pointer in the dd field. The symbol ’V’ is used to denote pointers to the center cell
from neighbors, e.g., the north neighbor points south with ’V’ , the east neighbor point west with
’V,1’ , and so on. The symbol ’Q’ is used for similar purposes for diagonal neighbors. The extra
“leg” of the letter Q is used as the arrow, e.g., the northwest neighbor points southeast with ’Q’ , and
the southeast neighbor points northwest with ’Q,2’ .

int ntod(nbr x) {
if (x:==no:) return ’V:dd’; // north points south
else if (x:==ne:) return ’Q,1:dd’; // northeast points southwest
else if (x:==ea:) return ’V,1:dd’; // east points west
else if (x:==se:) return ’Q,2:dd’; // southeast points northwest
else if (x:==so:) return ’V,2:dd’; // south points north
else if (x:==sw:) return ’Q,3:dd’; // southwest points northeast
else if (x:==we:) return ’V,3:dd’; // west points east
else if (x:==nw:) return ’Q:dd’; // northwest points southeast
else return 0;

}

3.6 Mathematical expressions and assignment statements

Mathematical expressions are formed by grouping together int data objects using mathematical oper-
ators. When evaluated, they produce int values that can be assigned to fields as next state values or
stored in variables as temporary results. Mathematical expressions can also be used in comparisons
to generate boolean values for use in control-flow statements, or they can be arguments to a function
or procedure. A mathematical expression will never form a statement by itself. It must be part of a
complete statement. Note that only int data objects can be operated mathematically. nbr and fld data
objects cannot be combined with mathematical operators, only comparison operators.

Trend’s mathematical operators are a subset of those in C. Listed below are Trend operators in the
order of ascending precedence. Operators with the same precedence level are evaluated from left to
right:

+ -
* / % & | ˆ

18



( )

Parentheses have the highest precedence because they can be used to change the computational or-
der. Multiplication (�), division (/), modulus (%), bitwise conjunction (&), bitwise disjunction (j) and
bitwise exclusion (ˆ ) operators are at the second precedence level. The addition and subtraction op-
erators (+, �) have the lowest precedence among mathematical operators. Mathematical operators
always take precedence over comparison operators (e.g. >, <, ==, etc.), which in turn take precedence
over boolean operators (&&) and (jj).

An assignment statement assigns a value obtained from a mathematical expression (for int type
only) or a data object (for int, nbr or fld types) to a variable, array element, or a field (with the int data
type only). If a new value is assigned to a field, that value is taken as the next state value of the field.
The most common assignment statement contains a left-hand-side, an equal sign (=), a right-hand-
side, and a semicolon as the terminator. The left-hand-side can be an object of any of the three data
types int, nbr and fld, but in the latter two cases the right-hand-side can only be simple data objects
of the same type because fld and nbr data objects cannot form expressions. The left-hand-side can be
a field, variable or array element but it cannot be a literal or function.

The special increment and decrement assignments are formed by a left-hand-side, followed by
either the ++ or the �� operator, and a semicolon. They either increase or decrease the left-hand-
side object value by one, and assign that new value back to the left-hand-side. Since a mathematical
operation is involved, these two special assignment statements cannot be used with data objects of
types nbr or fld since increasing or decreasing their values is meaningless. Again, the left-hand-
side can be a field, variable or array element but not a literal or function. Note that Trend treats all
assignments as statements, not expressions, so they do not produce values that can be embedded in
other expressions. This is different to C.

3.7 Control-flow statements

Several common C control-flow statements are provided in Trend. These statements are used to
change the order of execution under various conditions. Control-flow statements rely on boolean
expressions to determine the flow pattern. Boolean expressions are formed by combining together
comparisons using the logical operators “&&” and “jj”. “&&” has higher precedence over “jj” but
parentheses can be used to change the order of evaluation. Boolean evaluation is from left to right
within the same precedence level. Just like the C programming language, Trend does short circuit
boolean evaluation. Whenever a definite result can be determined during a partial evaluation of a
boolean expression, parts of that boolean expression may be ignored if they cannot change the out-
come of the evaluation. For example, in the following boolean expression,

1<2 || North:fieldA==fieldA

the second comparison never gets evaluated because the first one is always true and makes the whole
boolean expression true. It is not advisable to put a function call that may have global side effects in
a boolean expression since the function call may not be executed at all!

Comparisons are usually two mathematical expressions or data objects connected by a comparison
operator. A single mathematical expression in a place where a boolean result is expected will be taken
as testing if that expression is not equal to zero, just like in C. For example, “a+b” is the same as a
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more elaborated “a+b!=0 ” if it is placed in a boolean context. The comparison operators offered in
Trend are <, <=, ==, >=, >, and !=. Note that fld and nbr data objects can be compared only with
== and != operators since it is meaningless to compare the value of these types other than equality.

All statements can be grouped together using “f” and “g” to form a block statement. A block state-
ment can appear wherever a single statement can appear. Therefore, it permits multiple statements to
be grouped into one single control flow construct. In the following discussion, a statement can be
either a single or a block statement.

Conditional statements can take either the form

if ( boolean ) statement

or the form

if ( boolean ) statement1 else statement2

In the first case, if the boolean expression is true, the statement will be executed, otherwise it
is skipped. In the second case, statement1 will be executed if the boolean is true, otherwise
statement2 will be executed. Nested if statements are allowed and the dangling else is resolved
the traditional way, i.e., to associate it with the nearest if.

The over statement is unique in Trend. It is used for scanning all neighbors of a cell. It takes the
following form:

over each [other] nbr_variable statement

In essence, it loops through all neighbors of a cell, and assigns each neighbor position index into the
nbr variable . The nbr variable can then be referenced in the statement that follows. The
optional tag “other” determines whether the center cell itself is included in the scanning process. For
example, the following Trend code determines how many neighbors of a cell are in non-quiescent
states (nonzero):

count=0;
over each other y:

if (y:component) count++;

The while statement in Trend is exactly the same as the while statement in C. It takes the form:

while ( boolean ) statement

When the boolean expression is true the statement will be executed repeatedly until the boolean
becomes false. If the boolean is false on entry, the whole while statement will be skipped.

The for statement in Trend takes this form:

for ( initial list ; boolean ; modify list ) statement
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In Trend, the initial and modify lists of a for statement can only be assignment statements sepa-
rated by commas. Runtime protection for infinite loops is provided by Trend, but where a dead loop
occurs cannot be precisely reported by Trend. Programmers have to make sure that their looping
statements can always terminate. A break statement can be used inside the statement part of an
over, while or for construct to forcefully terminate the current iteration and jump directly to the next
statement following the loop.

As said earlier, procedure calls are very similar to function calls except that procedures are de-
clared with type void and do not return values. Therefore, procedure calls form statements all by
themselves. Procedures allow multiple code segments to be repeated with different given arguments.

3.8 The rotated if statement

Trend offers strong support for writing cellular automata rules by providing the rotated if statement.
Rotated if statements exploit the symmetry characteristics of most cellular automata models and often
reduce the size of Trend programs to 1/4 the size of them without using the rotated if statements. In
addition, a single rotated if statement is easier to understand than quadruply replicated regular if
statements for dealing with symmetrical conditions. We will see an example shortly.

A rotated if statement is formed by adding the reserve word rot in front of a regular if statement,
and by using rotatable literals in the boolean expression and the statement body of the if statement. All
symbolic literals of int, nbr and fld types are rotatable in a rotated if statement, but numeric int literals
are not. For example, the following function can replace the previous one on page 18. It also maps
a neighbor position to one of the eight pointer symbols, but requires just two rotated if statements
instead of the eight regular if statements used in the previouse function. In addition, the meanings
of the rotated if statements are more obvious here with less cluttering of code. They just indicate two
specific pointers that should be returned according to the position of the input x , and have Trend
automatically replicate the other test conditions for returning the other pointers:

int ntod(nbr x) {
rot if (x:==no:) return ’V:dd’; // north points south
else rot if (x:==nw:) return ’Q:dd’; // northwest points southeast
else return 0;

}

The term isotropy means something is directionally indifferent. An isotropic cellular automata
rule set guarantees that it will produce the same results, properly rotated, for different orientations of
the same starting cellular automata configuration. Isotropic cellular automata rule sets are important
because they make cellular automata simulations independent of the global orientations of the cellular
automata space. For some cellular automata models, e.g. the self-replication structures [20, 6], it is
especially important that the same outcome will appear in the cellular automata space no matter how
the initial cellular automata configuration is oriented. The rationale is that we cannot assume the first
self-replicating molecule on earth knows where the north pole of the earth is. Similarly, we cannot
assume that a self-replicating structure on a cellular automata space knows where is the top of its
embedding space.

The rotated if statement in essence is another kind of looping constructs that can be iterated up to
four times, testing the four different orientations of its boolean condition. Whenever an orientation
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Figure 6: Comparing non-isotropic and isotropic rotated if statements. Parts (a), (b), (c) and (d) are
the effects of a non-isotropic rotated if statement with an input cellular automata configuration in
four different orientations. Parts (e), (f), (g) and (h) are the effects of a modified isotropic rotated
if statement with the same input configurations. We can see that with the isotropic statement, the
center cell always gets the same value behind the arrow>, no matter how the input configuration is
oriented.

of the statement makes its boolean condition true, its statement body will be executed under the same
orientation, and the looping will stop. Therefore, the outcome of a rotated if statement depends on
the order of testing for the four different orientations. It can be non-isotropic. That is, if the same
rotated if statement is run again with a cellular automata configuration rotated clockwise 90Æ, it may
not produce the same result rotated 90Æ because the test order can be different. It is a programmer’s
responsibility to ensure an isotropic rule set when using the rotated if statement. However, this does
not imply that not using the rotated if statement will guarantee an isotropic rule set. In fact, it is easier
to produce a non-isotropic rule set when rotated if statements are not used.

For example, the following non-isotropic rotated if statement copies four different values to the
center cell depending on the orientation of the cellular automata space, as seen in parts (a), (b), (c)
and (d) of Figure 6. Since a rotated if statement is evaluated with the upright orientation first, the
value in the north neighbor always gets copied, no matter what it is. Here the symbols ’A’, ’B’, ’C’ and
’D’ represent strong rotational symmetry states, and the symbol ’>’ represents a group of four weak
rotational symmetry states.

rot if (no:value)
value=no:value; // copy active neighbor values

It is easy to guarantee an isotropic rotated if statement if one of the following two conditions is
met by that statement for all possible input configurations:

� Either none of the four orientations of a configuration makes its boolean condition true; or

� Only one of the four orientations of a configuration makes its boolean condition true.

If more than one of the four orientations of a configuration make its boolean condition true, only one
of them can be chosen to evaluate the statement part of a rotated if statement. Therefore, the outcome
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is non-isotropic because the choice can be arbitrary for different cellular automata configurations.
When there is only one choice, then no matter how the input configuration has rotated, that choice
will always be taken, so the rotated if statement is isotropic. If all rotated if statements in a Trend
program are isotropic, and there are no other statements that cause non-isotropic evaluations, then
the Trend program as a whole is isotropic.

To make a rotated if statement isotropic, users can always add (by && operator) a comparison
to its boolean condition such that only one of the four orientations can make this comparison true,
thereby ensuring that the whole rotated if statement is isotropic. This is usually a comparison of weak
rotational states used as directional pointers. Since pointers can only point to one direction, the added
comparison becomes an easy isotropy protection clause. For example, if the previous non-isotropic
statement is modified as follows, it becomes isotropic. The modified statement copies the same value
to the center cell no matter how the cellular automata space is oriented, as seen in parts (e), (f), (g) and
(h) of Figure 6. This statement is evaluated according to where the pointer ’>’ is pointing, therefore
the value of the neighbor behind the pointer always gets copied.

rot if (value==’>,1’ && no:value)
value=no:value; // copy the active neighbor behind the pointer

A rotated if statement takes the following form:

rot [(alignment boolean)] if ( boolean ) statement

The optional “(alignment boolean) ” has two uses. Sometimes, it is desirable to make the isotropy
protection comparison obvious. In that case the isotropy protection comparison can be moved into
the alignment boolean. Another use is when multiple orientations make the boolean condition true,
thus the statement is non-isotropic, but a specific orientation can be given a higher precedence using
the alignment boolean. That is, rather than starting from the upright orientation to test a rotated if
statement, users can align the starting orientation with some pointers in the alignment boolean. No
matter what the purpose is, if an alignment boolean is given in a rotated if statement, the rotated if
statement will be tested against the alignment boolean first, until a true value is obtained. Then, start-
ing from the orientation that makes the alignment boolean true, up to four more clockwise rotations
will be made to test the inner boolean condition until it either becomes true and the statement gets
executed, or until the four tests are exhausted and the whole rotated if statement is skipped. Note
that testing rotations are always clockwise which cannot be changed. Only the starting orientation
can be selected by the alignment boolean. For example, the isotropic rotated if statement above can
be rewritten in the following manner, which still is isotropic:

rot (value==’>,1’) if (no:value)
value=no:value; // copy the active neighbor behind the pointer

It may seem that if the alignment boolean is added, a rotated if statement will automatically be-
come isotropic. This is not necessary true. For example, the following rotated if statement has the
alignment boolean, and is very similar to the previous examples, but it is not isotropic. When applied
to the same cellular automata configurations, its effects are given in Figure 7.

rot (value<=’>,1’) if (no:value)
value=no:value; // copy the neighbor behind or left of the pointer
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Figure 7: Effects of a nonisotropic rotated if state-
ment with the optional alignment boolean.

An else part can follow any rotated if statement just like the regular if statement. Nested if state-
ments are acceptable inside or outside a rotated if construct, but nested rotated if statements are not
allowed because they are meaningless. Note that this restriction is applied contextually, not dynam-
ically. Within a rotated if statement, calls can be made to functions or procedures that use their own
rotated if statements. This is allowed because the rotated if statement inside a function or procedure
is independent of the current rotated if statement where the function or procedure is called. In other
words, the rotation of a rotated if statement does not go beyond function boundaries.

3.9 Default statements

Sometimes it is more convenience to designate a default statement for a field. That way, if the field
has not been assigned a new state value after the execution of regular Trend statements, the default
statement can be used to obtain a next state. Default statements are formed by adding the tag default
in front of any regular Trend statements, except declarations. Often, a default statement just copies
the current value of a field into itself, i.e., it simply states that “if none of the Trend rules changes the
current value of a field, then that field should stay unchanged”. Nevertheless, default statements can
use all Trend statements if needed, not just assignment statements.

3.10 Compilation and runtime errors

All compiling errors are shown in the Message area of the Text Window (cf. Figure 3) when they are
discovered. Since Trend is designed to be highly interactive, only the first syntax or semantic error is
reported. Users can easily modify their code right in the Text Window and recompile it with a few
keystrokes. Once a program has no compiling errors, it can be used to start a simulation. However, it
may still have runtime errors. Basically, four types of runtime errors are detected by Trend, as follows:

� The unsolved errors. During every epoch, each field in each cell must get a new value from
the execution of the Trend program. If this is not the case, Trend will report “unsolved” errors
during runtime and highlight cells with unsolved fields with a white background. Users need
to check the unsolved cells and determine why their values cannot be determined by the Trend
program. Frequently, the unsolved errors are caused by failing to provide a default statement
for a corresponding field or by forgetting to compile the program before running the simulation.
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� The conflict errors. Contrary to unsolved errors, conflict errors occur when a Trend program as-
signs more than one value to a given field during its execution. They are usually caused by logi-
cal errors in a program, and are strong hints that some rules may not be correct. Runtime conflict
checking can be disabled by users to speed up a simulation, but this is not recommended. Cells
with conflict errors are marked with a big “X”.

� The infinite loop errors. When a looping statement does not terminate during runtime, an infinite
loop error occurs. Trend catches this error by automatic timeout after the program execution has
been going on for a certain period of time, without returning. Users can abort a simulation when
this error is detected, then try to determine where their program gets stuck.

� The memory fault errors. An assignment to an out-of-bound array element triggers this error.
Trend catches this error and reports where in the source program this error occurs.

A condensed Trend grammar is given in the Appendix to summarize the Trend language in a formal
way.

4 Some Trend programming examples

We present a few Trend programming examples in this section to illustrate the Trend language. As
a general purpose programming language, Trend’s potential applications are enormous and cannot
all be presented here. Interested readers can find additional Trend examples in the Trend software
distribution.

4.1 Backward compatibility

Sometimes, it may be desirable to run old cellular automata models using Trend. Before the advent
of high level cellular automata programming languages, previous cellular automata models used a
tabular format to encode the cellular automata transition function in (neighborhood, next state) pairs.
Although it is no longer necessary to write cellular automata rules this way, Trend does have the
capability to easily adopt such a table into its rules, if necessary. Therefore, old models can be run in
Trend without much modification.

The following Trend program implements the well-known, Langton’s self-replicating loop [15],
using tables. The transition function domain values, each of them consists of the center, north, east,
south and west neighbor values of the von Neumann neighborhood, are listed in the array domain[] .
Their corresponding next state values are listed in the array next[] . This translated rule set is short
and simple; it just loops through the table trying to find a matching neighborhood value for the
current cell, then sets its next state accordingly. The looping statements are independent of the table
content, so they can be used to implement other table-based cellular automata models. Note the use
of the table length operator to determine the table size dynamically in Trend. Because this model is
isotropic, the use of a rotated if statement naturally extents the neighborhood values for the other
three orientations not explicitly listed in the table. Without using the rotated if, the tables would have
been four times their current sizes.

At first glance, the loop might seem inefficient, since it always scans sequentially through the table
to find a matching value. A binary search or hashing algorithm would do better than the sequential

25



0

2
2
2
2
2
2
2
2

2
1

7
1

7
1

2

2
7
2
2
2
2
2
2
7
2

2

2

2
1
2

2
1
2

2

2

2
4
2

2
7
2

2

2

2
1
2

2
1
2
2
2
2
2
2

2

2
4

1
1
1
1
1
7
2

2
2
2
2
2
2
2
1
2

2
1
2

2
1
2

2
1
2

2
1
2
2

151

2
2
2
2
2
2
2
2

2
1
1
1

4
1

4
2

2
1
2
2
2
2
2
2
1
2

2
1
2

2

2

2
7
2

2
7
2

2

2

2
1
2

2
1
2

2

2

2
2
2
2
2
7
2
2
2
2
2
2
7
2

2
1
7

1
7

1
7

1
7

1
2

2
2
2
2
2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2

2
1

7
1

7
1

2

2
7
2
2
2
2
2
2
7
2

2

2

2
1
2

2
1
2

2

2

2
4
2

2
7
2

2

2

2
1
2

2
1
2
2
2
2
2
2

2

2
4

1
1
1
1
1
7
2

2
2
2
2
2
2
2
1
2

2
1
2

2
1
2

2
1
2

2
1
2
2

Figure 8: Langton’s self-replicating loop. The loop at epoch 0 produces a replica of itself in epoch
151.

search. However, since Trend caches all evaluation results and has its own fast lookup mechanism, it
is actually not necessary to do any clever table lookup in a Trend program. Within one full replication
cycle (151 epochs for Langton’s loop), Trend will have all table information in its own internal cache.
After that, cell evaluations will no longer go through the compiled code. Instead, Trend will obtain
next state values directly from its internal cache.

This program correctly implements Langton’s self-replicating loop in Trend. The result is shown
in Figure 8. Note that we choose to represent state values with their actual numerical values in order
to facilitate comparison with the tables.

// This rule set demonstrates how the traditional table based rule
// sets can be easily mapped to Trend’s modern programming language
// constructs. Note that there is more than one way of doing this.

/* the domain table, in Center, North, East, South and West order */
int domain[]={00000, 00020, 00220, 20210, 20272, 20202, 20212, 20242,
20042, 20120, 12702, 72021, 02127, 12420, 42021, 02124, 42201, 20024,
27220, 21022, 10212, 17202, 11212, 22271, 11272, 22211, 22000, 01722,
71120, 12221, 20001, 00030, 20270, 20342, 30002, 00023, 20720, 72012,
03214, 24122, 22277, 07721, 12210, 20122, 22200, 10027, 12402, 12211,
24220, 12227, 72220, 20007, 12271, 21722, 00012, 10001, 00001, 01002,
10024, 41120, 22244, 04421, 10021, 11121, 12124, 11127, 12224, 42220,
20004, 20312, 30012, 13221, 13224, 20302, 30042, 43220, 20112, 10012,
20172, 20102, 20712, 00202, 01020, 02220, 22202, 22212, 27020, 22272,
11232, 02320, 31020, 23202, 11027, 02021, 01120, 12020, 22152, 22261,
72520, 52027, 01625, 62120, 12026, 25202, 26202, 12527, 52221, 22105,
02621, 25002, 00302, 22057, 07521, 52020, 00205, 07512, 25001, 25021,
22062, 10226, 10232, 02321, 31220, 22003, 23002, 22067, 07621, 62000,
00006, 06002, 20057, 00032, 10127, 30001, 00052, 02517, 50020, 12327,
00050, 20552, 50022, 02527, 52240, 25025, 45202, 22077, 72320, 30007,
10542, 50021, 25024, 00062, 12621, 60001, 20742, 72502, 50027, 07214,
25020, 10510, 11240, 12512, 20510, 50052, 12542, 55021, 00070, 00720,
70070, 00027, 77202, 10070, 12324, 42320, 30004, 30062, 00013, 12624,
63121, 10006, 26002, 20227, 00522, 50230, 35102, 12670, 62121, 26227,
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72501, 52127, 12425, 25220, 20520, 52022, 02125, 52120, 12115, 25120,
24221, 22103, 22162, 11126, 52121, 11125, 22032, 21261, 62212};

/* the corresponding next state table for the domain table above */
int next[]={0, 0, 0, 2, 2, 2, 2, 2, 3, 2, 7, 0, 1, 4, 0, 1, 0, 2, 2,
2, 1, 7, 1, 2, 7, 2, 2, 1, 0, 1, 2, 0, 2, 2, 2, 0, 2, 0, 1, 2, 2, 1,
1, 2, 2, 7, 4, 1, 2, 7, 1, 1, 7, 2, 2, 1, 2, 2, 4, 0, 2, 1, 1, 1, 4,
7, 4, 1, 2, 2, 3, 1, 4, 2, 1, 1, 2, 1, 2, 2, 2, 0, 2, 0, 2, 2, 3, 2,
1, 2, 1, 1, 0, 5, 0, 6, 2, 2, 5, 2, 1, 0, 6, 0, 2, 5, 0, 2, 1, 0, 0,
5, 1, 2, 0, 1, 2, 2, 2, 3, 7, 1, 0, 6, 2, 2, 1, 1, 3, 2, 5, 0, 7, 3,
5, 5, 2, 7, 0, 1, 5, 1, 4, 2, 0, 2, 1, 6, 7, 5, 2, 2, 1, 1, 2, 1, 2,
1, 2, 1, 4, 1, 7, 0, 7, 2, 1, 2, 7, 2, 0, 7, 4, 6, 1, 2, 2, 7, 1, 1,
2, 2, 2, 2, 1, 7, 5, 2, 0, 2, 5, 2, 2, 0, 5, 2, 2, 2, 2, 6, 2, 1, 2,
1, 6, 1, 5};

int i; /* counter for looping through all table entries */

default state=state; /* default is no change to a cell */

/* loop through all table entries */
for (i=0; i<next.length; i++)

rot if (domain[i]==state*10000+no:state*1000+
ea:state*100+so:state*10+we:state) {

state=next[i];
break;

}

4.2 A simple reaction-diffusion system

Reaction-diffusion systems are a set of chemical reactions where several catalysts are competing
and/or cooperating with each other in a circular manner. For example, in a three catalyst system,
catalyst A can help producing catalyst B but inhibit catalyst C, catalyst B can help producing cata-
lyst C but inhibit catalyst A, and catalyst C can help producing catalyst A but inhibit catalyst B. If a
mixture of these three catalysts are put together, spiral waves consisting of the three catalysts catch-
ing each other’s tail can usually occur through time. A well-known reaction-diffusion example is the
Belousov-Zhabotinsky reaction [14].

The following Trend program is translated directly from a CAM Forth program in chapter 9 of the
book [23]. It demonstrates that the CAM Forth language can be easily translated into Trend. This cel-
lular automata model tries to catch the spirit of the reaction-diffusion system in a very simple manner.
There is only one self-annealing reactant in this model. The existence of a reactant is represented by
the one bit field value. During each iteration, a cell scans its neighbors to accumulate density infor-
mation. The Moore neighborhood is used here. The alarm bit is set according to the conditions in the
array table[] . A cell sets its alarm bit if it has over three active neighbors, or if it has exactly two
active neighbors. The alarm bit then triggers the counter to countdown, that in turn disables the cell’s
value until the the counter becomes zero, when it will enable value again.
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Figure 9: A simple reaction-diffusion simulation.
The cellular automata space (250 by 250 cells)
is setup by randomly initializing the three data
fields value, alarm and counter. It puts individ-
ual cells at different phases of the transition. This
picture is taken after about 800 iterations of the
simulation.

Each cell in the cellular automata space is running independently. Starting from a randomly ini-
tialized cellular automata configuration, because of interactions among cells, we can see the formation
of spirals after the simulation has been running for a while, as shown Figure 9. For additional sim-
ulations with more catalysts, the cellular automata rules given in [2] can be used to replace the very
simple program here.

/* the alarm condition table */
int table[]={ 0, 0, 1, 0, 1, 1, 1, 1, 1};

int sum; /* the variable used to accumulate neighbor density */
nbr y; /* the variable used in the scanning of neighbors */

/* The default is no change to all fields */
default value=value;
default alarm=alarm;
default counter=counter;

/* scanning neighbors */
sum=0;
over each other y: /* loop through all neighbors */

if (y:value) sum++; /* if a neighbor is active, increase sum */

/* alarm bit is set according to the density collected */
alarm=table[sum];

/* value is cleared if counter is running, otherwise it is enabled */
if (counter==0)

value=1;
else

value=0;
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Epoch 1 Epoch 200

Figure 10: A simple genetic drift simulation. The cellular automata space (200 by 200 cells) is initial-
ized randomly (epoch 1). After 200 iterations, the four different species consolidate their territories
into different colored regions.

/* if alarm is set and the cell is active, counter starts */
if (value && alarm)

counter=3;
else if (counter) /* counter always counts down to zero */

counter--;

4.3 Scissor, rock, dynamite and paper

The following Trend program is translated directly from a Cellular implementation available on the
Internet [11]. It demonstrates how the Cellang languages can be translated to Trend. This is a genetic
drift model where four species scissor, rock, dynamite and paper are competing for cellular automata
space. The existence of a species is represented by its corresponding nonzero bit field. Each cell
can have only one surviving species at any time. During each iteration, a cell scans its neighbors to
accumulate competition information, then, depending on its occupying species and the information
gathered, a cell may be taken over by another species.

In Figure 10, we can see the result of a simulation after 200 steps from a randomly initialized space.
In Cellular, different field values can have different colors, but all fields must share the same color
scheme, thus multiple fields cannot be displayed at once. In Trend, different fields can be displayed
simultaneously with different colors, but each field uses only one color. Trend does use different
symbols to represent different states of a field. In order to create the coloring scheme similar to the
original Cellular implementation, we created four fields in our model for each of the species. Only
one of the four can be active in any cell at any time. Initialization is achived by using one additional
field, init, which can be randomly initialized and guarantee only one species is occupying a cell at the
beginning.
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// field array for scanning fields to avoid using explicit names
fld choices[] = { :scissor, :rock, :dynamite, :paper};

// threshold value to determine species change
int threshold=3;

// temporary index variables
int i;
nbr y;

// counters for the four different species in a cell’s neighborhood
int sum[4];

// as usual, default is no change to any field
default init=init;
default scissor=scissor;
default rock=rock;
default dynamite=dynamite;
default paper=paper;

// the init field is used only between epoch 0 -> 1 to initialize
// the four different fields, making sure that only one field is
// set. After that, the init field is reset to zero. The initial
// value range for init is 1 through 4.
if (init) {

choices[init-1]=1;
init=0;

// the rule set that determines the drift behavior
} else {

// first the counters are reset to zeros
for (i=0; i<sum.length; i++)

sum[i]=0;

// scan all four fields in Moore neighbors
over each other y:

for (i=0; i<sum.length; i++)
if (y:choices[i]) // an active neighbor, increase the counter

sum[i]++;

// determine if a species migration is called for
for (i=0; i<sum.length; i++)

if (choices[i] && sum[(i+1)%4]>=threshold) {
choices[i]=0;
choices[(i+1)%4]=1;
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Figure 11: A Voronoi diagram divides the space into regions centered around individual anchor
points. The diagram itself is represented by line segments in the space. The Voronoi diagrams for
two, three, four and five anchor points are shown.

break;
}

}

4.4 Massively parallel computing

A Voronoi diagram in a two dimensional space is the collection of points in the space which are
in equal distance to their nearby anchor points. A Voronoi diagram divides the space into regions
centered around these anchor points. For example, the Voronoi diagrams for two, three, four and five
randomly chosen anchor points are shown in Figure 11.

A Voronoi diagram can be constructed in a cellular automata space using cellular automata rules
running in parallel, as shown in Figure 12. At epoch 0, some random anchor points are set in a space
of 250 by 250 cells. An expanding square wave then goes out from each anchor point as seen in
epoch 5 and all subsequent epochs. When waves originated from two anchor points collide, they
from a Voronoi segment at the crash site. Since waves are expanding at equal speed from anchor
points, we know that the Voronoi segments established by them will be in equal distance to all nearby
anchor points. The collection of all Voronoi segments forms the Voronoi diagram for the cellular
automata space. Note that cellular automata Voronoi diagrams are different to geometric Voronoi
diagrams because distances are measured by the L1 metric, i.e. dist(p; q) = max(jpx � qxj; jpy � qyj),
in cellular automata. In a geometric space the Voronoi segments can be seen as formed by the collision
of expanding cycles from anchor points.

One way to examine the correctness of a Voronoi diagram is to see if all of its segments are con-
nected. If there is any unconnected segment, the Voronoi diagram is not fully constructed or may be
incorrect. In Figure 12, we can see that each square wave gradually claims a portion of the cellular
automata space for its anchor point. By epoch 40, a Voronoi diagram has been fully established with
no disconnected segments. Nothing will change after that in the cellular automata space.

The Trend program which constructs the Voronoi diagram of a cellular automata space is shown
below with a companion Figure 13 to demonstrate the various situations that must be considered
during the construction process. This model uses the Moore neighborhood and has only one data
field, “value”. The symbol ’>’ is used to represent the four weak rotational symmetric states denoting
an expanding wave toward quadrilateral directions. The symbol ’Q’ is used to represent the other four
weak rotational symmetric states denoting an expanding wave toward diagonal directions. Since
there are no suitable symbols in the ASCII character set to represent diagonal movement, the extra
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Figure 12: A Voronoi diagram is found by sending expanding square waves from each anchor
point. The initial configuration has some random anchor points in a 250 by 250 space. To reduce the
size of the figures, each cell is represented by only a single pixel, thus we can only tell the difference
of active (black) and quiescent (grey) states. The cellular automata space is wrapped around the four
sides in a torus-like shape, as in all Trend models.

“leg” of the letter ’Q’ is used for that purpose. The symbol ’* ’ is used to denote anchor points, the
symbol ’%’ is used to denote the Voronoi points found, and the symbol ’S’ is used to denote anchor
points after epoch 0, so they will not send out additional waves. Only a total of 12 states are used in
this rule set.

nbr y; // for scanning neighbors
int sum; // for counting incoming waves toward a quiescent cell
int ptr; // for storing the new direction of a quiescent cell
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case 5

case 6

case 7

case 8

case 9

case 10

Figure 13: Voronoi rules in action. Ten cases are illustrated in this figure to explain the purpose
of some rules in the Voronoi program. Please refer to the comments accompanying the rules for
explanation.
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default value=value; // default is no change to any cell

/* Function ntod() maps neighbor positions to the eight weak
rotational symmetric states, which determine the direction a wave is
expanding. From the point of view for a quiescent cell, this function
is used to determine if some nearby waves are moving toward
itself. This function has been discussed before in the language
section about the rotated if statement. */

int ntod(nbr x) {
rot if (x:==we:) return ’>:value’;
else rot if (x:==nw:) return ’Q:value’;
else return 0;

}

if (value==0) { // rules for quiescent cells

/* The enclosed rules determine the next state value for a quiescent
cell. The idea is to scan the neighbors of the quiescent cell in
order to determine if there is any wave moving toward it. The
variable ’sum’ records how many such waves are found. If it is more
than 1, a collision of waves occurs, and the quiescent cell must be
converted to the Voronoi point state ’%’. If there is only one
incoming wave, the quiescent cell will be converted to carry one of
the eight expansion pointers, depending on which direction the wave
is coming from. The new pointer value is temporarily stored in the
variable ’ptr’. */

sum=0; // clear the incoming wave counter

over each other y: { // scan neighbors for incoming waves

/* This rule starts the expanding wave around an anchor point, as
seen in case 1. Whenever there is an anchor point ’*’ around a
quiescent cell, that quiescent cell will be converted to an
expansion pointer in the next epoch. Note that the anchor point
’*’ will be immediately converted to a nonfunctional state ’S’ by
the following rules in order to prevent multiple expanding waves
from the same anchor point. */

if (y:value==’*’) {
sum++;
ptr=ntod(y:);

/* This rule keeps expanding the wave, as seen in case 2. It is
very similar to the rule above except that the direction of the
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wave also has to be verified. The function ntod() is used again to
determine if a wave is moving toward the quiescent cell. */

} else if (y:value==ntod(y:)) {
sum++;
ptr=y:value;

/* This rule keeps expanding the wave, but at the corners. See
case 3 for its effects. Note that the pointer of the neighbor does
not actually point at the quiescent cell. This rule, when combined
with the previous one, makes a continuously expanding square, as
seen in case 4. */

} else rot if (y:==no: && (y:value==’Q’ || y:value==’Q,1’)) {
ptr=’>,1:value’;
sum++;

}
}

/* After the scanning, if there is only one incoming wave, set the
new expansion pointer accordingly. */

if (sum==1)
value=ptr;

/* Otherwise, there is a collision. This quiescent cell should be
part of a Voronoi segment. Set to the Voronoi state ’%’ instead. */

else if (sum>1)
value=’%’;

/* This rule keeps the Voronoi segment expand after it is formed.
There are three special cases in which the Voronoi segment has to
expand after it is formed in order to connect with the other Voronoi
segments. The first case is when two waves meet at exactly the same
row or column of quiescent cells. That will generate a single line
Voronoi segment. But the problem is, this Voronoi segment will not
be connected to the other segments if it does not keep expanding
toward its two ends, as seen in case 5. The first OR’ed condition in
the following rule makes sure the Voronoi segment is still
expanding, as seen in case 6. The other two OR’ed conditions work
similarly, but are for double-line Voronoi segments which are formed
when two expanding waves reach each other at the same time. The
behavior of a double-line Voronoi segment with and without these two
conditions are shown in case 8 and 7, respectively. */
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else rot if (we:value==’%’ && (nw:value==’>’ && sw:value==’>’ ||
nw:value==’%’ && sw:value==’>’ ||
nw:value==’>’ && sw:value==’%’))

value=’%’;

} else if (value==’*’) // rules for anchor points

/* An anchor point always change to ’S’ after epoch 0, or multiple
waves will come out from the same point. */

value=’S’;

else rot if (value==’>’) { // rules for quadrilateral pointers

/* A pointer in the expanding wave will return to the quiescent
state in the next epoch, unless there is a collision, as seen in
cases 7, 8, 9 and 10. In these cases, it changes instead to a
Voronoi point ’%’ due to the collision. */

if (ea:value)
value=’%’;

else
value=0;

} else rot if (value==’Q’) { // rules for diagonal pointers

/* Similarly, pointers at the four corners of a square wave will
return to the quiescent state unless they collide with other
waves. This rule has extra conditions to make sure two expanding
waves will not cross each other without changing their corners to
the Voronoi point state, as shown in case 9. The corrected behavior
with the two extra OR’ed conditions is shown in case 10. */

if (se:value || ea:value==’Q,1’ || so:value==’Q,3’)
value=’%’;

else
value=0;

}

The computational speed for finding cellular automata Voronoi diagram this way is O(d), where
d is the longest dimension of the cellular automata space. In another word, this algorithm is running
at the speed of light of the cellular automata space4. A complexity of O(n log n) is usually needed for
sequential algorithms to find geometrical Voronoi diagrams. The speed of these algorithms depends
on the number of anchor points n, but the cellular automata method does not.

4The speed of light is referred to as the fastest speed a signal can travel in a particular cellular automata model. With the
Moore neighborhood, it is one cell per epoch.
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4.5 Artificial life

As said previously, von Neumann developed cellular automata in order to prove that it is possible
to create machines that can compute and reproduce itself [24]. He eventually succeeded in creating
a 29-state model that was capable of universal construction and computation. After von Neumann’s
seminary work, others have taken his approach and created more self-reproducing models. E.F. Codd
created a universal cellular automata machine using 8-state cells [8]. Christopher Langton took one of
Codd’s information preserving “loop” and turned that into a self-replicating loop [15] (cf. Section 4.1.)
Although Langton’s loop is not capable of universal computation anymore, it can be readily simulated
on a personal computer with its small size. John Byl created a smaller version of Langton’s loop [5],
and Reggia et al. created an even simpler self-replicating loop with only six cells [19].

Since von Neumann’s original work, focus has been to create ever simpler self-replication struc-
tures to facilitate the implementation on a computer. The rationale is that the first self-replicating
molecule on earth might not be capable of universal computation. It was when more of them were
put together that they formed ever more complex organisms. Therefore, maybe we should start from
the very basic self-replicating machinery, then build our way up in model complexity. That is a dif-
ferent approach than von Neumann’s, and is the approach take by us in creating the emergent self-
replication models where autonomous monomer cells can gather together to form the smallest self-
replicating structures, and these structures can grow bigger and become more complex [6]. For more
information on the subject of cellular automata self-replicating studies, interested readers can read
the survey article in [21].

In this last example, we show that Trend allows programmers to develop complex cellular au-
tomata rules by dividing their programming effort among separate data fields, i.e., Trend allows
a field-oriented programming approach. When programmers are working on some features of their
models, they only need to concentrate on those fields relevant to these features. They do not need
to worry about other fields and functions. This allows several programmers to independently create
individual features of a complex rule set, then put them together at the end.

To illustrate, look at a previously published self-replication model that is capable of solving the
satisfiability problem (SAT) [7]. In its original design (Figure 14a), self-replicating loops carrying the
unknown bits ‘A’ will gradually turn them into either ‘0’ or ‘1’ depending on whether they stay with
the parent or child loops during a replication cycle. This differential replication feature, when coupled
with additional monitor mechanisms in the cellular automata space, removes loops carrying unfit
answers from the space, leaving only satisfiable loops to continue their replication. Whatever are left
in the cellular automata space after several generations of replication become the satisfying answers
to a particular SAT problem encoded in the rules.

Functions of this model can be divided into the following: self-replication of a loop, data differenti-
ation from ‘A’ to either ‘0’ or ‘1’, selection of unsatisfying bit sequences, and removal of loops carrying
unsatisfying bit sequences. These functions more or less are independent of each other, so they can be
altered separately. To confirm this, we asked an undergraduate student to change the self-replicating
loop to a self-replicating square that can pack more data into the same size cellular automata space [4].
In the past, most self-replicating structures were designed to be loop-shaped to prevent unwanted in-
terferences between nearby signals. However, when we started using a dedicated data field to control
the direction of signal movement, as in the SAT model, the interference problem should have been
automatically resolved. Our student successfully creates his self-replicating squares as expected, but
it is surprising to see how easily we can incorporate his new rules into our original SAT rules, creating
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Figure 14: The SAT problem-solving self-replicating structures. (a) The original model. A loop-
shaped initial structure shown in bold generates two survival offsprings in the cellular automata
space after a couple of generations. The SAT bit sequences carried by the offsprings are read off
clockwise after the L signal, i.e. 111100 and 000100. They represent the only satisfying answers to a
SAT predicate embedded in the rules. (b) The new model created by our student. A square-shaped
initial structure shown in bold also generates two survival offsprings after a couple of generations.
The SAT bit sequences they carry are the same as the loops, but their shape and replication mothod
are different.

a new model that can solve the SAT problem squarely (Figure 14b).

The undergraduate student does not know how the other parts of the SAT model work (bit evolu-
tion, monitor selection, etc.). He focuses only on creating his self-replicating square based on a specific
data field. After he has created his rules, we can combine them with the other SAT rules operating on
different data fields by changing just a few lines of the code that couple bit sequences with the self-
replicating squares, so they can be carried with the squares. The Trend programs for the SAT model
are too long to be reproduced here. They are included in the Trend software distribution for anyone
who is interested.

5 Discussion

The CAM-6 machine and Cellular system described in the introduction are more or less designed for
simulating physical systems, notably reaction-diffusion systems [14, 23]. Their design objective is
very different than Trend. Trend is designed more for the development of complex cellular automata
rule sets. While developing a cellular automata program which supports a desired behavior such as
self-replication, we need to constantly observe the current simulation results, modify the program,
go back a few time steps, and run the simulation again. This kind of highly interactive trial-and-error
approach is not easily supported in the other systems.

In addition, the Trend programming language contains many cellular automata specific constructs
that are not found in the other languages. The rotated if statement is a new invention in the Trend
language. It can fully exploit the rotational symmetry of a cellular automata model, and potentially
reduce the size of an isotropic cellular automata program to only 1=4 its size without using the rotated
if. Trend has been carefully designed to support cellular automata rule sets which are both isotropic
and conflict free. Preventive features, like conflict catching, dead loop detecting, and unsolved report-
ing, are also unique in Trend.

The Trend language presents a standard C like syntax which is familiar to most users. In Trend, all
neighbor and field names automatically become semi-reserve words in the language. These reserve
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words are given special treatment by the Trend compiler and are quite handy in describing cellular
automata rules at a higher conceptual level. Trend also allows the definition of symbolic literals. Such
symbols are used both to display the cellular automata space on screen and to represent individual
states in a Trend program. Therefore, the direct correspondence between what the user writes in his
code and what he sees on the screen greatly simplifies efforts to recognize and correct programming
errors. The use of symbolic literals in the rotated if statement further enhances the usefulness of the
rotated if statement. These features are also not available in the other cellular automata languages.

It is worth mentioning, however, that the Cellang language does have some interesting features
which are not available in Trend. These include the special time and random system variables, sup-
port of multi-dimensional cellular automata, and the object-oriented agents programming mechanism.
The system defined variables and the agents mechanism do not belong to the standard definition of
homogeneous cellular automata. They are extensions to the standard model. When Trend was be-
ing developed, we had a strong desire to follow the standard of a homogeneous, self-contained, time
and position indifferent cellular automata model. Therefore, those extra features of Cellular were not
pursued in this work.

The one-pass compiler of Trend currently imposes a no-forward-reference restriction on Trend pro-
grams. Recursive calls are allowed, but indirect recursive calls with two or more functions involved
are not possible at the moment. Although this does not consist a major limitation to the power of the
Trend language, it may be inconvenient for some occasions. This restriction may be addressed in the
next revision if we find enough actual applications that call for this feature.

Currently, there are two different Trend implementations, one for Unix-like systems and one for
the Java Virtual Machine. These two implementations are fully compatible at the input/output level
and share the same cellular automata, template and program files. However, internally, there are some
difference between them. On the Java Virtual Machine, Trend generates the Java Virtual Machine
code. On Unix systems, it generates our own set of virtual code. The benefit of using virtual machine
code rather than machine code is certainly the portability. It allows the Trend systems to be ported
easily to the other platforms. On the downside, running virtual machine code requires another layer
of interpretation during runtime, which can slow a simulation down. Although this speed penalty
is not a major issue for many cellular automata models where the caching mechanism of Trend can
reduce or eliminate runtime evaluations dramatically, it may become an issue with certain models
and when the simulated space size is increased. If the speed of Trend becomes a bottleneck, the
code generation module of the Trend compiler can be modified to generate native machine code. It
is worth noting that the Trend implementation on Java runs roughly at 1/4 the speed of the Unix
version in the same machine. This slowdown is probably due to the overhead of implementing the
more powerful and general features of the Java Virtual Machine. However, in exchange for the speed,
the Java implementation of Trend (called jTrend) is highly portable. It can run on Unix systems, PC
and Mac without any modification. We believe the Java Version of Trend will make it more widely
available to new users.

The Trend system is a general purpose cellular automata simulation environment. For any general
purpose system, its potential applications are often beyond the imagination of the system designer.
Even seasoned users of Trend often discover new usages of the language and system. It is possible
that some Trend programmers can discover new applications of it in the future. A library of useful
Trend applications can be maintained to avoid re-engineering the same features and allow them to be
shared by the other Trend users.
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Appendix: A concise Trend language grammar

The following Trend grammar is converted from the actual grammar we used to implement Trend
using automatic parser generator tools. Some conversions are necessary in order to make the grammar
more concise and readable. Note that a context-free grammar alone cannot capture all the semantic
requirements of a language. The Trend language semantics have been discussed in Section 3.

This grammar uses extended BNF notations. Extended BNF notations are similar to regular ex-
pressions, e.g. parentheses ’(’ and ’)’ group subexpressions together, ’| ’ connects alternative choices,
’?’ denotes zero or one occurrence, ’*’ denotes zero or more recurrences, and ’+’ denotes one or more
recurrences. Each production of the grammar consists of a nonterminal name, a colon, a list of its pos-
sible derivations separated by ’j’, and a terminating ’;’. Do not confuse the BNF grammar symbols
above with language-specific symbols. Symbols or words inside single quotes (e.g. ’default’, ’+’, or
’&&’) represent terminal tokens of the Trend language. These terminal tokens are reserve words or
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symbols of the language that can be used as is in a Trend program (without the quotes, of course).
CAPITALIZED words in this grammar are also terminal tokens, but their textual representations are
user-defined. The following is a brief outline of user-defined terminal tokens and their meanings:

� NEW VARIABLE denotes a variable that must begin with a letter but can include letters, digits
or underscores (’ ’) in its name.

� VALUE denotes an integer value either in numeric forms (e.g. 1, 2, or 33) or symbolic forms (e.g.
’>’, ’O’, or ’1’).

� RVALUE denotes a rotatable literal representing a weak rotational state defined in a cellular
automata template (e.g. ’>,1’ or ’Q,3’). RVALUEs are special in Trend because they are automat-
ically rotated by the compiler into the other three counterpart states within a rotated if statement.
Note that a symbol (e.g. ’>’) can denote either a VALUE or a RVALUE, depending on how that
symbol is defined in a template.

� INTEGER denotes a variable or array for storing integer values.

� FIELDNAME denotes a field, a field variable or a field array.

� NEIGHBORNAME denotes a neighbor, a neighbor variable or a neighbor array. Similar to
RVALUE, NEIGHBORNAME is automatically rotated inside a rotated if statement by the Trend
compiler if it is a template-defined neighbor name.

� PROCEDURE denotes a procedure that does not return a value.

� FUNCINTEGER denotes a function that returns an integer value.

� FUNCNEIGHBOR denotes a function that returns a neighbor index.

� FUNCFIELD denotes a function that returns a field index.

Everything else in lower case letters are grammar production names that are defined within the gram-
mar itself. The starting production for this grammar is program .

program: ( declaration | statement | ’default’ statement )+ ;
declaration: variable_decl ’;’ | function_decl ;
variable_decl: ( ’int’ | ’nbr’ | ’fld’ ) name_list ;
function_decl: ( ’int’ | ’nbr’ | ’fld’ | ’void’ ) NEW_VARIABLE

’(’ (argument_list)? ’)’ ’{’ function_stmts ’}’ ;
argument_list: variable_decl ( ’;’ variable_decl )* ;
name_list: name ( ’,’ name )* ;
name: NEW_VARIABLE | NEW_VARIABLE ’=’ i_value

| NEW_VARIABLE ’[’ VALUE ’]’
| NEW_VARIABLE ’[’ ’]’ ’=’ ’{’ i_list ’}’ ;

i_list: i_value ( ’,’ i_value )* ;
i_value: VALUE | RVALUE | ’:’ FIELDNAME | NEIGHBORNAME ’:’ ;
function_stmts: ( variable_decl ’;’ | statement )+ ;
statements: ’{’ (statement)+ ’}’ | statement ;
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statement: field_assignment ’;’ | var_assignment ’;’ | condition
| PROCEDURE ’(’ (par_list)? ’)’ ’;’ | function_return ’;’
| ’break’ ’;’ | loop_head statements ;

field_assignment: field ’=’ expr | field ’+’ ’+’ | field ’-’ ’-’ ;
var_assignment: integer ’=’ expr | integer ’+’ ’+’ | integer ’-’ ’-’

| ’:’ field ’=’ ’:’ field | neighbor ’:’ = neighbor ’:’ ;
condition: if_head | if_head ’else’ statements ;
if_head: normal_if | ’rot’ normal_if | ’rot’ ’(’ boolean ’)’ normal_if ;
normal_if: ’if’ ’(’ boolean ’)’ statements ;
function_return: ’return’ | ’return’ expr | ’return’ neighbor ’:’

| ’return’ ’:’ field ;
loop_head: ’over’ ’each’ (’other’)? NEIGHBORNAME ’:’

| ’while’ ’(’ boolean ’)’
| ’for’ ’(’ (assignment_list)? ’;’ boolean ’;’

(assignment_list)? ’)’ ;
assignment_list: var_assignment ( ’,’ var_assignment )* ;
boolean: conjunction ( ’||’ conjunction )* ;
conjunction: disjunction ( ’&&’ disjunction)* ;
disjunction: ’(’ boolean ’||’ conjunction ’)’ | comparison ;
comparison: expr | neighbor ’:’ ( ’=’ ’=’ | ’!’ ’=’) neighbor ’:’

| ’:’ field ( ’=’ ’=’ | ’!’ ’=’ ) ’:’ field ;
| expr ( ’>’ | ’>’ ’=’ | ’=’ ’=’ | ’<’ ’=’ | ’<’ | ’!’ ’=’ ) expr

par_list: parameter ( ’,’ parameter )* ;
parameter: expr | ’:’ field | neighbor ’:’ ;
integer: INTEGER | INTEGER ’[’ expr ’]’ ;
field: FUNCFIELD ’(’ (par_list)? ’)’ | FIELDNAME

| FIELDNAME ’[’ expr ’]’ ;
neighbor: FUNCNEIGHBOR ’(’ (par_list)? ’)’ | NEIGHBORNAME

| NEIGHBORNAME ’[’ expr ’]’ ;
expr: factor ( ( ’+’ | ’-’) factor )* ;
factor: literal ( ( ’*’ | ’/’ | ’%’ | ’&’ | ’|’ | ’ˆ’ ) literal )* ;
literal: neighbor ’:’ field | field | integer | VALUE | RVALUE

| INTEGER ’.’ ’length’ | FIELDNAME ’.’ ’length’
| NEIGHBORNAME ’.’ ’length’
| FUNCINTEGER ’(’ (par_list)? ’)’ | ’(’ expr ’)’ ;
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